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Abstract Two series of styrene monomers, one with

phosphorus-containing moieties as substituents and the

other with substituents containing both phosphorus and

nitrogen, have been prepared, characterized, and converted

to oligomers. The oligomers contain, in the one case,

phosphorus and, in the other, phosphorus and nitrogen.

This provides the opportunity to not only assess the impact

of the presence of phosphorus on the combustion charac-

teristics of the oligomers but to determine whether or not

this impact is enhanced by the presence of nitrogen. The

level of residue from thermogravimetry and heat release

rate during combustion suggest that the presence of nitro-

gen may have a small positive impact on the effectiveness

of phosphorus flame retardants.
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Introduction

Thermogravimetry (TG) has long been used as a com-

ponent of the assessment of the effectiveness of flame-

retarding additives in polymeric materials [1–10]. It can

be utilized to determine the thermal degradation

characteristics of both the additive-free polymer and the

flame retardant. More importantly, it can be used to

determine the impact of the presence of the additive on

the thermal degradation characteristics of the polymer.

The onset temperature for degradation, an alteration of the

mode of the decomposition in the presence of the addi-

tive, and the amount of the residual char formed may

readily be determined using this technique. In particular,

the char yield upon decomposition has been utilized as a

first indicator of potential utility as a flame retardant for

the additive. At higher temperature, TG can provide

information about the decomposition of residual char.

Most usually, TG is used in conjuction with several other

techniques for an assessment of flame retardant activity.

These often include a determination of limiting oxygen

index, behavior in the UL-94 vertical burn test and/or

cone calorimetric evaluation [10, 11]. More recently,

pyrolysis combustion flow calorimetry (PCFC) has been

used to obtain combustion data for polymeric materials

containing flame retardant additives [1, 12–16]. This

approach provides combustion calorimetric data using

much smaller samples and at significantly lower cost than

is possible with cone calorimetry. In this technique oxy-

gen combustion calorimetry is used to measure both the

rate of the heat release and the amount of heat released by

complete combustion of fuel gasses generated by pyro-

lysis of a small (mg) sample of the flame-retarded

material [18]. In this instance, the degradation and com-

bustion characteristics of two sets of styrenic oligomers,

one containing phosphorus and the other containing both

phosphorus and nitrogen, have been determined using TG

and PCFC. The change in the glass transition temperature

(Tg) for the polymer upon incorporation of bulky pendant

groups may be readily monitored using differential

scanning calorimetry (DSC).
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Experimental

Materials

The preparation and characterization of styrene polymers

containing phosphorus or nitrogen/phosphorus moieties as

pendants has been described [19–21].

Thermogravimetry

TG was performed using a TA Instruments 2950 Hi-Res

TG instrument interfaced with the Thermal Analyst 2100

control unit. Most generally, a heating rate of 10 �C min-1

was used. Samples (5–10 mg) were contained in a standard

platinum pan. The sample compartment was purged with

dry nitrogen at 50 ml/min during analysis. TA Universal

Analysis software was used for data analysis.

Differential scanning calorimetry

Tg’s were determined using a DSC Q 2000 (TA Instru-

ments). The samples were contained in standard aluminum

DSC pans. Samples were heated from –20 to 200 �C in a

nitrogen atmosphere at a rate of 10 �C min-1. Duplicate

analyses were obtained for each sample. The Tg’s were

obtained from the second heating cycle, using TA Uni-

versal Analysis software. A pure iridium metal standard

was used to determine a temperature-correction factor

which was used for all runs.

Pyrolysis combustion flow calorimetry

PCFC was performed using a Govmark microscale com-

bustion calorimeter. PCFC measures the rate at which the

heat of combustion of the fuel gasses is released by a solid

during controlled pyrolysis in an inert gas stream. The fuel

gasses are then mixed with excess oxygen and completely

oxidized at high temperature, and the instantaneous heat of

combustion of the flowing gas stream is measured by

oxygen consumption calorimetry, which is subsequently

used to determine the heat of combustion of the pyrolysis

products. For this method, small polymer samples

(1–10 mg) were dried for at least 8 h at 75 �C in a con-

vection oven and held in a dessicant chamber until testing.

The samples were heated at a constant rate (1 �C sec-1)

from 150 to 700 �C. The volatile pyrolysis products gen-

erated during the temperature ramp were swept from the

pyrolyzer into the combustion chamber (900 �C) by

nitrogen gas flowing at 80 cm3 min-1 to which was added

20 cm3 min-1 of pure oxygen. Combustion gasses were

scrubbed to remove carbon dioxide, water, and acid gasses

(if any), and the gas stream passed through a flow meter

and oxygen analyzer. Deconvolution of the oxygen

consumption signal was performed during the test, and the

heat release rate was calculated in watts per gram of

sample.

Results and discussion

Flame retardants containing phosphorus as an active

component are increasingly of interest as the regulatory

pressure to avoid the use of organohalogen flame retardants

continues to grow. Organohalogen compounds are highly

effective gas-phase flame retardants but are persistent in

the environment, tend to bioaccumulate, and may present

potential health risks. Organophosphorus compounds are,

in the main, solid-phase active and promote the formation

of a protective char on the surface of a polymeric material

in a combustion environment. This prevents heat feedback

from the flame to sustain polymer pyrolysis and the for-

mation of fuel fragments. Numerous organophosphorus

compounds of varied structure serve as effective flame

retardants [21–27]. Further, it has often been suggested that

the flame retardant activity of these compounds is

enhanced in the presence of nitrogen compounds [28–40].

To assess the impact of the presence of nitrogen on the

flame-retarding properties of phosphorus compounds two

sets of substituted styrene oligomers, one containing

phosphorus and the other containing both phosphorus and

nitrogen have been examined using TG and PCFC. The

polymers are listed in Table 1. Since these polymers con-

tain the flame-retarding moieties as an integral part of the

monomer units which get covalently incorporated into the

structure there is no opportunity for blooming to the sur-

face and loss during processing [41].

The level of elemental phophorus and nitrogen for these

polymers is displayed in Table 2.

The Tg for these polymers (Table 3) are generally higher

that for poly(styrene). This may be reflective of strong

intermolecular interactions between the polar groups pen-

dant to the polymer main chain.

Thermal decomposition of the polymers bearing only

phosphorus-containing pendants is depicted in Fig. 1.

As can be seen, the onset temperature for degradation is

higher for the polymers with phosphorus-containing pen-

dant groups than for unsubstituted poly(styrene). Further,

the residue from degradation of the phosphorus-containing

polymer is significantly greater (16–27 % of the initial

sample mass) than for the degradation of unsubstituted

poly(styrene) (0 %). The degradation of the polymers

bearing pendant groups containing both phosphorus and

nitrogen is depicted in Fig. 2. Again, the onset temperature

for degradation of the polymers with phosphorus/nitrogen-

containing pendant groups is generally higher than that for

unsubstituted poly(styrene). Degradation of these polymers
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also leads to significant levels of residual material

(25–40 % of the initial sample mass). Not only is the level

of residue much higher than that for unsubstituted

poly(styrene) but is significantly greater than that for

degradation of polymers with pendant groups containing

only phosphorus. Based on these simple observations, it

would seem that the beneficial impact of phosphorus on the

thermal stability of poly(styrene) is strongly enhanced by

the presence of nitrogen. Data for the degradation of both

sets of polymers are displayed in Table 4.

A reflection of the impact of the presence of the pendant

groups on the combustion of the polymers is provided by
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Fig. 1 Thermal degradation of styrene polymers bearing phosphorus-

containing pendant groups

Table 1 Styrene polymers containing phosphorus- or phosphorus/nitrogen flame-retarding units

H2C
P

O

R1

R2

n

HN
P

O

R1

R2

n

Homopolymer code name Homopolymer code name

R1 = R2 = OCH3 HPM1 R1 = R2 = OCH3 HPM5

R1 = R2 = OC2H5 HPM2 R1 = R2 = OC2H5 HPM6

R1 = R2 = OC6H5 HPM3 R1 = R2 = OC6H5 HPM7

R1, R2 = DOPO HPM4 R1, R2 = DOPO HPM8

Table 2 Phosphorus and nitrogen content in styrene polymers con-

taining modified phenyl units

Polymer Phosphorus content/% Nitrogen content/%

HPM1 13.7 0

HPM2 12.2 0

HPM3 8.9 0

HPM4 9.3 0

HPM5 13.6 6.2

HPM6 12.1 5.5

HPM7 8.9 4.0

HPM8 9.9 4.2

Table 3 Glass transition temperatures for poly(styrene) and phos-

phorus and phosphorus/nitrogen-containing styrenic polymers

Polymer Tg/�C

HPM1 122.4

HPM2 130.2

HPM3 –

HPM4 153.4

PS 102

HPM5 131.5

HPM6 132.4

HPM7 136.1

HPM8 126.2

PS 102
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Fig. 2 Thermal degradation of styrene polymers bearing pendant

groups, containing both phosphorus and nitrogen
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the data from PCFC [17]. Plots of heat release rates versus

time for polymers are displayed in Figs. 3 and 4.

First, it is apparent that the presence of phosphorus in

the polymer dramatically alters heat release rate for com-

bustion of the polymer. As may be seen from the plots in

Fig. 4, this impact is enhanced by the presence of nitrogen

in the phosphorus/nitrogen-containing pendant groups.

Heat release values for the polymers are collected in

Table 5. The heat release values for the combustion of

polymers containing both phosphorus and nitrogen are

marginally smaller than those for the polymers containing

only phosphorus.

Conclusions

The thermal degradation and combustion characteristics for

two sets of styrene polymers, one containing phosphorus

and the other containing both phosphorus and nitrogen,

have been evaluated using TG and PCFC. TG suggests that

the presence of nitrogen changes the impact of the phos-

phorus on the stability of the polymers (higher onset tem-

perature for degradation and significantly higher levels of

residue after decomposition). In addition, polymers con-

taining both phosphorus and nitrogen display somewhat

depressed combustion heat release rates compared to those

containing only phosphorus. These results support the

suggestion that the impact of phosphorus compounds act-

ing as flame retardants is enhanced in the presence of

nitrogen compounds. However, the impact observed for

these polymers is small and may not be reflective of a

general phenomenon.
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